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TD15 – Intégrales à paramètre

Exercice 1 ⋆⋆

Soit F (x) =
∫ +∞

0

cos(xt)e−t
2

dt.

1. Déterminer le domaine de définition DF de F . Étudier la parité de F .
2. Montrer que F est continue sur son ensemble de définition
3. Montrer que F est de classe C 1 sur DF et exprimer F ′(x) à l’aide d’une intégrale.
4. Déterminer une équation différentielle vérifiée par F et en déduire une expression simple de
F (x)

Exercice 2 ⋆⋆

Soit F (x) =
∫ +∞

0

ch(xt)e−t
2

dt.

1. Montrer l’existence de F (x) pour tout x ∈ R. Étudier la parité de F .
2. Montrer que F est de classe C 1 sur R (on pourra utiliser une domination locale), et exprimer
F ′(x) à l’aide d’une intégrale.

3. Déterminer une équation différentielle linéaire du premier ordre vérifiée par F et en déduire

une expression simple de F (x) On pourra utiliser le fait que
∫ +∞

0

e−t
2

dt =
√
π

2
.

Exercice 3 ⋆⋆

On pose, pour tout x > 0, F (x) =
∫ +∞

0

te−tx

1 + t2
dt.

1. Montrer que F est définie et continue sur R∗
+. (on pourra utiliser une domination locale)

2. Montrer que F est monotone.
3. Déterminer les limites de F en +∞ et en 0. On commencera par justifier que pour tout

t ∈
[
0,

1

x

]
,

e−tx ⩾ 1− tx ⩾ 0.

Donner l’allure de la courbe.
Exercice 4 ⋆⋆⋆

Soit la fonction Γ : x 7→
∫ +∞

0

e−ttx−1 dt.

1. Montrer que Γ est définie sur ]0,+∞[.
2. Montrer que Γ est continue sur ]0,+∞[ (on pourra utiliser une domination locale).
3. Montrer que Γ est de classe C∞ (on pourra utiliser une domination locale) sur ]0,+∞[ et

que :

∀k ∈ N∗, Γ(k)(x) =

∫ +∞

0

lnk(t)e−ttx−1 dt.

4. En déduire que la fonction Γ est convexe sur ]0,+∞[ (i.e. Γ′′ ⩾ 0).
5. Démontrer que pour tout x ∈]0,+∞[,Γ(x+ 1) = xΓ(x).
6. En déduire que pour tout n ∈ N,Γ(n+ 1) = n!.

7. Démontrer que Γ

(
1

2

)
=

√
π.

Exercice 5 ⋆⋆⋆

On pose F (x) =
∫ x

0

sin t

t+ x
dt.

1. Montrer que F est définie sur R.
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2. Montrer que pour tout n ∈ N et pour tout x ⩾ 0, In =

∫ 2(n+1)π

2nπ

sin t

t+ x
dt ⩾ 0. En déduire

que F est positive sur R+.

3. Montrer que F (x) =
∫ 1

0

sinux

1 + u
du. En déduire que F est impaire, de classe C 1, et calculer

sa dérivée.
4. À l’aide d’une intégration par parties, calculer lim

x→+∞
F (x).

Exercice 6 ⋆⋆⋆

On pose F (x) =
∫ 1

0

etx
√
1− t2 dt, et, pour tout n ∈ N, In =

∫ 1

0

tn
√

1− t2 dt.

1. Déterminer le domaine de définition de F , puis montrer que F est de classe C∞ sur DF .
Donner une expression intégrale de F (n) pour tout n ∈ N.

2. Calculer I0 et I1, puis chercher une relation de récurrence entre In et In+2.
3. En déduire le développement limité à l’ordre 3 de F en 0, puis l’allure de la courbe de F en

ce point.
4. Préciser le sens de variation de F sur DF , puis déterminer les limites aux bornes. Tracer

l’allure de la courbe.
Exercice 7 ⋆⋆⋆

Soit f : R → C continue et intégrable sur R. On pose :

f̂ : x 7→
∫ +∞

−∞
f(t)e−ixt dt.

La fonction f̂ est appelée transformée de Fourier de f .
1. Démontrer que f̂ est définie, continue et bornée sur R.
2. On considère désormais la fonction f définie par f(t) = e−

t2

2 . Montrer que f̂ est de classe
C∞ sur R.

3. Calculer f̂ ′ et en déduire la valeur de f . On admettra que
∫ +∞

0

e−t
2

dt =
√
π

2
.

Exercice 8 ⋆⋆⋆

Étudier et représenter graphiquement la fonction f définie par : f(x) =
∫ 1

0

√
x+ t3 dt.

Exercice 9 ⋆⋆⋆

Soit f définie pour x > 0 par f(x) =
∫ +∞

0

e−t

x+ t
dt.

1. Montrer que f(x) est bien définie
2. Montrer que la fonction f est de classe C 0,C 1,C∞ (on pourra utiliser une hypothèse de

domination locale) et exprimer, pour tout entier n ∈ N, f (n)(x).
3. Étudier les variations de f , ses limites et tracer son graphe.
4. Montrer que f est solution d’une équation différentielle (E) linéaire du premier ordre. En

déduire toutes les solutions de (E).

Exercice 10 ⋆⋆

Soit f et g définies sur R par f(x) =
(∫ x

0

e−t
2

dt
)2

et g(x) =
∫ 1

0

e−x
2(1+t2)

1 + t2
dt.

1. Montrer que f et g sont de classe C 1 sur R.
2. Montrer que f ′ + g′ = 0.

3. En déduire la valeur de I =

∫ +∞

0

e−t
2

dt.
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Exercice 11 ⋆⋆⋆⋆

Soit f la fonction définie sur [0,
π

2
[ par

f(θ) = ln(1− sin(θ)2)

1. Montrer que f est intégrable sur [0 ,
π

2
[.

2. On considère la fonction F définie sur R par

F (t) =

∫ π
2

0

ln(1 + t× sin(θ)2) dθ

(a) Montrer que F est bien définie et est continue sur [−1 , +∞[

(b) Établir que F est de classe C1 sur ]− 1 , +∞[ et que

∀t ∈]− 1 , +∞[ F ′(t) =

∫ π
2

0

sin(θ)2

1 + t× sin(θ)2
dθ

3. (a) En posant le changement de variable u = tan(θ), montrer que, pour tout t ∈]− 1,+∞[,

F ′(t) =
π

2
√
1 + t× (1 +

√
1 + t)

(b) En déduire que, pour tout t ∈]− 1,+∞[,

F (t) = π ×
(
ln(1 +

√
1 + t− ln(2)

)
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Exercices issus d’oraux

Exercice 12 ⋆⋆⋆
(Oral 2018)

Pour t ∈ R∗, on pose s(t) = sin(t)

t
et pour x ∈ R, S(x) =

∫ x

0

s(t) dt.

Enfin pour x ⩾ 0, on pose f(x) =
∫ +∞

0

s(t)e−xt dt.

Soit I =

∫ +∞

0

1− cos(t)

t2
dt et G(x) =

∫ +∞

0

1− cos(t)

t2
e−xt dt.

1. Montrer que s est prolongeable en une fonction de classe C1 et bornée sur R.
2. Montrer que S est de classe C2 sur R.

3. Montrer que, pour tout x 6= 0 , S(x) = 1− cos(x)

x
+

∫ x

0

1− cos(t)

t2
dt.

4. En déduire que f est définie sur [0,+∞[.
5. Montrer que lim

x→+∞
f(x) = 0.

6. Montrer que f est C1 sur ]0,+∞[. On pourra commencer par le faire sur [a,+∞[ avec a > 0.
7. Calculer f(x).
8. En admettant la continuité de f en 0 , calculer lim

x→+∞
S(x).

Exercice 13 ⋆⋆⋆
(Oral 2014, 2018)

Pour x ∈]− 1,+∞[, on définit f(x) =
∫ +∞

0

1

1 + x3 + t3
dt.

1. Montrer que f est dérivable sur ]− 1,+∞[ et déterminer le sens de variations de f .
2. Montrer que pour tout t ∈ R \ {−1},

1

1 + t3
=

1

3(1 + t)
+

2− t

3 (1− t+ t2)

et en déduire la valeur de f(0).
3. Déterminer la limite de f en +∞.
4. Déterminer une équation différentielle du premier ordre vérifiée par f .
5. En déduire f .

Exercice 14 ⋆⋆⋆
(Oral 2008)

Soit E = C∞(R). Pour f ∈ E on note T (f) la fonction définie par

∀x ∈ R, T (f)(x) =

∫ 1

0

f(tx) dt

1. Montrer que l’application T ainsi définie est un endomorphisme de E
2. Déterminer les éléments propres de T .
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Corrigés des exercices

Corrigé de l’exercice 1

1. Pour x ∈ R la fonction t 7→ cos(xt)e−t
2

est continue et, pour tout t ∈ [0,+∞[ on a∣∣∣cos(xt)e−t2 ∣∣∣ ⩽ e−t
2

.

La fonction t 7→ e−t
2

est continue sur [0,+∞[, ainsi
∫ 1

0

e−t
2

dt converge.

Pour t ⩾ 1 on a 0 ⩽ e−t2 ⩽ e−t. Or
∫ +∞

1

e−t dt converge. Ainsi, par théorème de comparai-

son pour les intégrales de fonctions positives,
∫ +∞

1

e−t
2

dt converge.

Finalement, par majoration
∫ +∞

0

cos(xt)e−t
2

dt converge absolument pour tout réel x. F est
donc définie sur R.
Pour x ∈ R on a −x ∈ R et

F (−x) =
∫ +∞

0

cos(−xt)e−t
2

dt =
∫ +∞

0

cos(xt)e−t
2

dt = F (x)

F est donc paire.
2. • Pour tout x ∈ R la fonction t 7→ cos(xt)e−t

2

est continue sur [0,+∞[

• Pour tout t ∈ [0,+∞[ la fonction x 7→ cos(xt)e−t
2

est continue sur R
• Pour tout x ∈ R et tout t ∈ [0,+∞[ on a

∣∣∣cos(xt)e−t2 ∣∣∣ ⩽ e−t
2

et la fonction t 7→ e−t
2

est intégrable sur [0,+∞[
Attention à ce que
votre majorant in-
tégrable ne dépende
pas de x

Majoration

Ainsi, d’après le théorème de continuité sous le signe intégrale, la fonction F est continue sur
R.

3. • Pour tout x ∈ R la fonction t 7→ cos(xt)e−t
2

est intégrable sur [0,+∞[

• Pour tout t ∈ [0,+∞[ la fonction x 7→ cos(xt)e−t
2

est de classe C1 sur R, sa dérivée est
la fonction x 7→ −t sin(xt)e−t

2

• Pour tout x ∈ R la fonction t 7→ −t sin(xt)e−t
2

est continue sur [0,+∞[

• Pour tout x ∈ R et tout t ∈ [0,+∞[ on a
∣∣∣−t sin(xt)e−t2 ∣∣∣ ⩽ te−t

2

Or, pour A > 0 on a

∫ A

0

te−t
2

dt =

[
−e−t

2

2

]A
0

=
1

2
− e−A

2

2
−→

A→+∞

1

2

Ainsi la fonction t 7→ te−t
2

est intégrable sur [0,+∞[.
Ainsi, d’après le théorème de dérivabilité sous le signe intégrale, la fonction F est de classe
C1 sur R et on a

∀x ∈ R, F ′(x) =

∫ +∞

0

−t sin(xt)e−t
2

dt

4. Soit x ∈ R, On va réaliser une intégration par parties dans l’expression de F ′(x).

Posons u : t 7→ e−t
2

2
et v : t 7→ sin(xt). u et v sont de classe C1 sur [0,+∞[ et on a, pour

t ⩾ 0, u′(t) = −te−t
2

et v′(t) = x cos(xt).

Pour t ⩾ 0 on a 0 ⩽ u(t)v(t) ⩽ e−t
2

2
, ainsi, par encadrement lim

t→+∞
u(t)v(t) = 0.

Pour réaliser une
intégration par par-
ties dans une inté-
grale généralisée il
est important de
d’abord vérifier que
t 7→ u(t)v(t) a des
limites finies au bord
de l’intervalle d’inté-
gration.

I.P.P.
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On peut ainsi réaliser une intégration par parties, on a

F ′(x) =

∫ +∞

0

−t sin(xt)e−t
2

dt

=

∫ +∞

0

u′(t)v(t) dt

= lim
t→+∞

u(t)v(t)− u(0)v(0)−
∫ +∞

0

u(t)v′(t) dt

= 0− 0−
∫ +∞

0

x cos(xt)
e−t

2

2
dt

= −x
2
F (x)

F est solution de l’équation différentielle (E) : y′ +
x

2
y = 0.

L’ensemble des solutions de cette équation est
{
x 7→ Ke−

x2

4 , K ∈ R
}

.

Or F (0) =
√
π

2
, ainsi

∀x ∈ R, F (x) =

√
π

2
e−

x2

4

Corrigé de l’exercice 2

1. Pour x ∈ R la fonction t 7→ ch(xt)e−t
2

est continue. On en déduit que
∫ 1

0

e|xt|e−t
2

dt converge
en tant qu’intégrale d’une fonction continue sur un segment.

Pour u ∈ R on a ch(u) =
eu + e−u

2
, d’où | ch(u)| ⩽ e|u|.

Ainsi, pour tout t ∈ [0,+∞[ on a
∣∣∣ch(xt)e−t2 ∣∣∣ ⩽ e|xt|e−t

2

.

Par croissance comparée on a lim
t→+∞

t2e|xt|e−t
2

= 0, c’est-à-dire e|xt|e−t
2

=
t→+∞

o

(
1

t2

)
Or

∫ +∞

1

1

t2
dt converge. Ainsi, par théorème de comparaison pour les intégrales de fonctions

positives,
∫ +∞

1

e|xt|e−t
2

dt converge.

Finalement, par majoration
∫ +∞

1

cos(xt)e−t
2

dt converge absolument pour tout réel x et

donc
∫ +∞

0

cos(xt)e−t
2

dt converge absolument pour tout réel x. On en déduit que F est
définie sur R.
Pour x ∈ R on a −x ∈ R et

F (−x) =
∫ +∞

0

ch(−xt)e−t
2

dt =
∫ +∞

0

ch(xt)e−t
2

dt = F (x)

F est donc paire.
2. Soit K > 0, on va montrer que F est de classe C1 sur [−K,K]

L’énoncé nous sug-
gère d’utiliser une
domination lo-
cale. En effet on
peut prouver qu’il
n’existe pas de fonc-
tion φ intégrable sur
[0,+∞[ telle que,
pour tout x ∈ R
et tout t ⩾ 0,
| ch(xt)e−t2 | ⩽ φ(t)

Localisation

• Pour tout x ∈ [−K,K] la fonction t 7→ ch(xt)e−t
2

est intégrable sur [0,+∞[

• Pour tout t ∈ [0,+∞[ la fonction x 7→ ch(xt)e−t
2

est de classe C1 sur [−K,K], sa dérivée
est la fonction x 7→ t sh(xt)e−t

2

• Pour tout x ∈ [−K,K] la fonction t 7→ t sh(xt)e−t
2

est continue sur [0,+∞[

• Pour tout x ∈ [−K,K] et tout t ∈ [0,+∞[ on a∣∣∣t sh(xt)e−t2 ∣∣∣ ⩽ te|xt|e−t
2 ⩽ teKte−t

2
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La fonction t 7→ teKte−t
2

est continue sur [0,+∞[ et, par croissance comparée on a

teKte−t
2

=
t→+∞

o

(
1

t2

)
. Ainsi par théorème de comparaison pour les intégrales de fonc-

tions positives elle est intégrable sur [0,+∞[.
Ainsi, d’après le théorème de dérivabilité sous le signe intégrale, la fonction F est de classe
C1 sur [−K,K].
Puisque F est de classe C1 sur tous les intervalles de la forme [−K,K] avec K > 0, elle est
alors de classe C1 sur

⋃
K>0

[−K,K] = R.

Le théorème de déri-
vabilité sous le signe
intégrale nous assure
que F est de classe
C1 et donc en par-
ticulier continue, il
n’est alors pas né-
cessaire de montrer
séparement que F
est continue.

Continuité

3. Soit x ∈ R, On va réaliser une intégration par parties dans l’expression de F ′(x).

Posons u : t 7→ −e−t
2

2
et v : t 7→ sh(xt). u et v sont de classe C1 sur [0,+∞[ et on a, pour

t ⩾ 0, u′(t) = te−t
2

et v′(t) = x ch(xt).

Pour t ⩾ 0 on a 0 ⩽ u(t)v(t) ⩽ e|x|t−t
2

2
, ainsi, par encadrement lim

t→+∞
u(t)v(t) = 0.

On peut ainsi réaliser une intégration par parties, on a

F ′(x) =

∫ +∞

0

t sh(xt)e−t
2

dt

=

∫ +∞

0

u′(t)v(t) dt

= lim
t→+∞

u(t)v(t)− u(0)v(0)−
∫ +∞

0

u(t)v′(t) dt

= 0− 0 +

∫ +∞

0

x ch(xt)
e−t

2

2
dt

=
x

2
F (x)

F est solution de l’équation différentielle (E) : y′ − x

2
y = 0.

L’ensemble des solutions de cette équation est
{
x 7→ Ke

x2

4 , K ∈ R
}

.

Or F (0) =
√
π

2
, ainsi

∀x ∈ R, F (x) =

√
π

2
e

x2

4

Corrigé de l’exercice 3

1. Pour t ∈ [0,+∞[ on a 2t ⩽ 1 + t2, ainsi, pour x > 0 et ⩾ 0 on a
∣∣∣∣ te−tx1 + t2

∣∣∣∣ ⩽ e−tx.

On sait que, si x > 0, alors
∫ +∞

0

e−tx dt converge ( et
∫ +∞

0

e−tx dt = 1

x
).

Ainsi, par théorème de comparaison pour les intégrales de fonction positives,
∫ +∞

0

te−tx

1 + t2
dt

converge absolument pour tout x > 0.
Soit ε > 0, on a va montrer que F est continue sur [ε,+∞[.

• Pour tout x ⩾ ε, la fonction t 7→ te−tx

1 + t2
est continue sur [0,+∞[

• Pour tout t ∈ [0,+∞[, la fonction x 7→ te−tx

1 + t2
est continue sur [ε,+∞[

• Pour tout t ⩾ 0 et tout x ∈ [ε,+∞[ on a
∣∣∣∣ te−tx1 + t2

∣∣∣∣ ⩽ e−εt et la fonction t 7→ e−εt est

intégrable sur [0,+∞[ ?
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Ainsi, d’après le théorème de continuité sous le signe intégrale, F est continue sur [ε,+∞[.
Puisque F est continue sur tous les intervalles de la forme [ε,+∞[ avec ε > 0, elle est alors
continue sur

⋃
ε>0

[ε,+∞[= R∗
+.

2. Soit (a, b) ∈]0,+∞[2 avec a ⩽ b.
Pour tout t ∈ [0,+∞[ on a e−at ⩾ e−bt et donc

∀t ⩾ 0,
te−at

1 + t2
⩾ te−bt

1 + t2

D’où, par croissance de l’intégration,
∫ +∞

0

e−at

1 + t2
dt ⩾

∫ +∞

0

e−bt

1 + t2
, i.e. F (a) ⩾ F (b).

F est donc décroissante.

3. On a vu que, pour t ⩾ 0, on a 0 ⩽ te−tx

1 + t2
⩽ e−tx.

Ainsi, en intégrant, on a, pour x > 0, 0 ⩽ F (x) ⩽ 1

x
.

Par encadrement on en déduit que lim
x→+∞

F (x) = 0.

On sait de plus que, pour tout u ∈ R, eu ⩾ 1 + u, ainsi, pour tout x > 0 et tout t ∈
[
0,

1

x

]
,

e−tx ⩾ 1− tx ⩾ 0.
On a alors

F (x) =

∫ +∞

0

te−xt

1 + t2
dt

=

∫ 1
x

0

te−xt

1 + t2
dt+

∫ +∞

1
x

te−xt

1 + t2
dt

⩾
∫ 1

x

0

t(1− tx)

1 + t2
dt

⩾
∫ 1

x

0

t− t2x

1 + t2
dt

⩾
∫ 1

x

0

t

1 + t2
− xt2 + 1− 11 + t2 dt

⩾
∫ 1

x

0

t

1 + t2
− x+ x1 + t2 dt

⩾
[
1

2
ln(1 + t2)− tx+ x arctan(t)

] 1
x

0

=
1

2
ln

(
1 +

1

x2

)
− 1 + x arctan

(
1

x

)
=

1

2
ln
(
1 + x2

)
− ln(x)− 1 + x arctan

(
1

x

)

Or lim
x→0+

1

2
ln
(
1 + x2

)
− ln(x)− 1 + x arctan

(
1

x

)
= +∞, ainsi lim

x→0+
F (x) = +∞.

Corrigé de l’exercice 4

1. Posons f(x, t) = e−ttx−1.
Pour x > 0, la fonction t 7→ f(x, t) est continue sur ]0,+∞[, donc est intégrable sur tout
segment inclus dans R∗

+, elle est de plus positive sur ]0,+∞[

En 0+, on a f(x, t) ∼
t→0+

tx−1. Or x−1 > −1, ainsi l’intégrale de Riemann
∫ 1

0

tx−1 dt converge
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et ainsi, par critère d’équivalence pour les intégrales de fonctions positives,
∫ 1

0

tx−1e−tdt
converge.

En +∞, on a t2f(x, t) −→
t→+∞

0, ainsi f(x, t) =
t→+∞

o

(
1

t2

)
. Puisque

∫ +∞

1

1

t2
dt converge et

que la fonction t 7→ 1

t2
est positive, le théorème de comparaison par négligeabilité nous assure

que
∫ +∞

1

e−ttx−1 dt converge.

Finalement, pour tout x > 0, la fonction t 7→ f(x, t) est intégrable sur R+, Γ est donc bien
définie sur ]0,+∞[.

2. • On a vu que, pour tout x > 0, la fonction t 7→ f(x, t) est continue sur R∗
+.

• Pour tout t > 0 la fonction x 7→ f(x, t) est continue sur ]0,+∞[.
• soit α, β deux nombres réels tels que 0 < α < β.

On définit ψ par ψ(t) = tα−1 si 0 < t < 1, ψ(1) = 1 et ψ(t) = tβ−1 si t > 1.
Alors

∀t > 0, ∀x ∈ [α, β], 0 ⩽ tx−1 ⩽ φ(t)

De manière analogue à la question 1. on prouve que la fonction φ : t 7→ e−tφ(t) est
positive et intégrable sur R∗

+

D’après le théorème de continuité sous le signe intégrale, on en déduit que Γ est continue sur
tout intervalle [α, β], avec 0 < α < β. Ainsi Γ est continue sur ]0,+∞[.

3. On va procéder par récurrence. Pour n ∈ N on pose Pn « Γ est de classe Cn sur ]0,+∞[ et

Γ(n)(x) =

∫ +∞

0

lnn(t)e−ttx−1dt. ».

Initialisation :
La question 2. nous assure que P0 vraie.
Hérédité :
Soit n ∈ N, on suppose Pn vraie.
Soit 0 < a < α < β < b et x ∈ [α, β].
Notons g(x, t) = lnn(t)e−ttx−1

— Pour tout x ∈ [α, β], la fonction t 7→ lnn(t)e−ttx−1 est continue sur ]0,+∞[.
— Pour tout x ∈ [α, β], on a, par croissance comparée lim

t→0
lnn(t)e−ttx−a = 0, d’où lnn(t)e−ttx−1 =

t→0

o
(
ta−1

)
. Or t 7→ ta−1 est intégrable sur ]0, 1]

De plus, toujours par croissance comparée, lim
t→+∞

lnn(t)tx−b = 0, ainsi lnn(t)e−ttx−1 =
t→+∞

o
(
tb−1e−t

)
et t 7→ tb−1e−t est intégrable sur [1,+∞[.

On en déduit que, pour tout x ∈ [α, β], la fonction t 7→ g(x, t) est intégrable sur ]0,+∞[.

— Pour tout t > 0, la fonction x 7→ lnn(t)e−ttx−1 est de classe C1 sur [α, β] et ∂g
∂x

(x, t) =

lnn+1(t)e−ttx−1

— Pour tout x ∈ [α, β], t 7→ lnn+1(t)e−ttx−1 est continue sur ]0,+∞[.
— On définit φ par

φ(t) =


∣∣lnn+1(t)tα−1

∣∣ si 0 < t < 1

φ(1) = 1

φ(t) = tβ−1 lnn+1(t) si t > 1

φ est continue sur ]0,+∞[ et le même raisonnement que pour g(x, t) prouve que φ est
intégrable sur ]0,+∞[.
De plus,

∀t ∈ [α, β],

∣∣∣∣∂g∂x (x, t)
∣∣∣∣ ⩽ φ(t)

Ainsi, d’après le théorème de dérivabilité sous le signe intégrale, la fonction x 7→
∫ +∞

0

lnn(t)e−ttx−1 dt.
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est de classe C1 sur [α, β], ce pour tout (α, β) ∈]0,+∞[. Elle est donc de classe C1 sur ]0,+∞[

et sa dérivée est x 7→
∫ +∞

0

lnn+1(t)e−ttx−1dt.

Or, par hypothèse de récurrence, Γ est de classe Cn sur ]0,+∞[ et

∀x ∈]0,+∞[, Γ(n)(x) =

∫ +∞

0

lnn(t)e−ttx−1 dt.

On a ainsi montré que Γ(n) est de classe C1 et que

∀x ∈]0,+∞[,
(
Γ(n)

)′
(x) =

∫ +∞

0

lnn+1(t)e−ttx−1 dt.

C’est-à-dire que Γ est de classe Cn+1 et que

∀x ∈]0,+∞[, Γ(n+1)(x) =

∫ +∞

0

lnn+1(t)e−ttx−1 dt.

Pn+1 est bien vraie ce qui achève la récurrence.

4. Soit x > 0, on a Γ′′(x) =

∫ +∞

0

ln2(t)e−ttx−1dt.

La fonction intégrée est positive sur ]0,+∞[, donc Γ′′(x) ⩾ 0. Γ est bien convexe.
5. On effectue, dans l’expression de Γ(x+ 1) l’intégration par parties u(t) = tx et v(t) = −e−t.
u et v sont de classe C1 sur ]0,+∞[, de plus on a lim

t→0
u(t)v(t) = 0 et lim

t→+∞
u(t)v(t) = 0 Ainsi,

comme toutes les intégrales convergent, on obtient

Γ(x+ 1) = −
∫ +∞

0

(−e−t)xtx−1 dt = xΓ(x)

6. On procède par récurrence sur n ∈ N.
Initialisation :

On a Γ(0 + 1) =

∫ +∞

0

e−t dt = 1 = 0!.

Hérédité :
Soit n ∈ N, on suppose que Γ(n+ 1) = n!, alors

Γ(n+ 2) = (n+ 1)Γ(n) = (n+ 1)× n! = (n+ 1)!

Ce qui prouve la propriété au rang n+ 1 et achève la récurrence.

7. On a Γ

(
1

2

)
=

∫ +∞

0

1√
t
e−t dt.

Soit φ : t 7→
√
t. φ est de classe C1, bijective, strictement croissante de R∗

+ vers R∗
+, c’est

donc un changement de variable licite.
On a alors,

Γ

(
1

2

)
=

∫ +∞

0

1√
t
e−t dt

=

∫ +∞

0

e−φ(t)
2

2φ′(t) dt

= 2

∫ +∞

0

e−u
2

du

=
√
π

Corrigé de l’exercice 5
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1. Si x = 0 l’intégrale va de 0 à 0 donc est nulle.
Si x > 0, alors pour tout t ∈ [0, x], t + x ⩾ x > 0. Si x < 0, alors pour tout t ∈ [x, 0],
t+ x ⩽ x < 0. Dans les deux cas, la fonction intégrée est donc bien définie et continue sur le
segment adéquat. F est donc définie sur R.

2. — Soit n ∈ N et x ⩾ 0. On a

In =

∫ 2(n+1)π

2nπ

sin(t)

t+ x
dt

=

∫ 2nπ+π

2nπ

sin(t)

t+ x
dt+

∫ 2nπ+2π

2nπ+π

sin(t)

t+ x
dt

=

∫ π

0

sin(u)

u+ 2nπ + x
du+

∫ π

0

− sin(u)

u+ 2nπ + π + x
du changement de

variable u = t− 2nπ
dans la première
intégrale et
u = t− 2nπ − π dans
la deuxième

=

∫ π

0

sin(u)

(
1

u+ 2nπ + x
− 1

u+ 2nπ + π + x

)
du

=

∫ π

0

π sin(u)

(u+ 2nπ + x)(u+ 2nπ + π + x)
du

Puisque la fonction intégrée est positive sur [0, π] on a bien In ⩾ 0.
Le résultat à dé-
montrer se "voit"
sur un dessin : le
graphe de la fonc-
tion t 7−→ sin t

t+ x
a l’allure de celui
de sin, pondéré par
un poids ( 1

t+ x
) de

plus en plus petit
quand t augmente.

Intuition

— Soit n l’unique entier tel que 2nπ ⩽ x < 2(n+1)π i.e. n =
⌊ x
2π

⌋
. On a donc, d’après la

relation de Chasles

F (x) =

n−1∑
k=0

Ik +

∫ x

2nπ

sin t

t+ x
dt

Si x ∈ [2nπ, 2nπ + π], comme t 7−→ sin t

t+ x
est positive sur [2nπ, 2nπ + π], on a∫ x

2nπ

sin t

t+ x
dt ⩾ 0.

Si x ∈]2nπ + π, 2nπ + 2π[, alors∫ x

2nπ

sin t

t+ x
=

∫ 2nπ+π

2nπ

sin t

t+ x
+

∫ x

2nπ+π

sin t

t+ x

comme t 7−→ sin t

t+ x
est négative sur [2nπ + π, 2nπ + 2π], on a

∫ x

2nπ+π

sin t

t+ x
⩾

∫ 2nπ+2π

2nπ+π

sin t

t+ x

D’où
∫ x

2nπ

sin t

t+ x
⩾ In ⩾ 0

Dans tous les cas, F (x) est positif comme somme de termes positifs.

3. — Pour x = 0 on a bien F (0) = 0 =

∫ 1

0

sin 0

1 + u
du

Pour x 6= 0 le changement de variable t = ux donne directement le résultat voulu
— Soit x ∈ R, on a

F (−x) =
∫ 1

0

sin(−ux)
1 + u

du = −
∫ 1

0

sinux

1 + u
du = −F (x)

F est donc impaire.

— Posons, pour x ∈ R et u ∈ [0, 1], f(x, u) = sin(ux)

1 + u
.

La fonction u 7→ f(x, u) est intégrable sur [0, 1] en tant que fonction continue sur un
segment.
La fonction x 7→ f(x, u) est de classe C1 et

∀(x, u) ∈ R×[0, 1],
∂f

∂x
(x, u) =

u cos(ux)

1 + u

11 Bastien Marmeth
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La fonction t 7→ u cos(ux)

1 + u
est continue sur [0, 1]

Enfin
∀(x, u) ∈ R×[0, 1],

∣∣∣∣u cos(ux)1 + u

∣∣∣∣ ⩽ u

1 + u

et la fonction u 7→ u

1 + u
est intégrable sur [0, 1] en tant que fonction continue sur le

segment [0, 1].
D’après le théorème de classe C1 pour les intégrales à paramètres la fonction F : x 7→∫ 1

0

f(x, u) du est donc de classe C1 sur R et ∀x ∈ R :

On verra en fait plus
tard que, lorsque
l’intervalle d’intégra-
tion est un segment
et que la fonction
(x, t) 7→ f(x, t) est
de classe C1 en tant
que fonction de deux
variables alors toutes
les hypothèses du
théorème de dériva-
bilité sous l’intégrale
sont vérifiées.

Cas particulier

F ′(x) =

∫ 1

0

u cos(ux)

1 + u
du

4. Soit x > 0, on a, par intégration par parties

F (x) =

[
−1

x

cos(ux)

1 + u

]1
0

− 1

x

∫ 1

0

cos(ux)

(1 + u)2
du =

cos(x)

2x
+

1

x
− 1

x
Iu,x

où Iu,x =

∫ 1

0

cos(ux)

(1 + u)2
du

On a alors

|F (x)| =
∣∣∣∣cos(x)2x

+
1

x
− 1

x
Iu,x

∣∣∣∣
⩽

∣∣∣∣cos(x)2x

∣∣∣∣+ ∣∣∣∣ 1x
∣∣∣∣+ ∣∣∣∣ 1xIu,x

∣∣∣∣
⩽ 3

2x
+

1

x

∫ 1

0

∣∣∣∣ cos(ux)(1 + u)2

∣∣∣∣ du

⩽ 3

2x
+

1

x

∫ 1

0

1

(1 + u)2
du

Puisque lim
x→+∞

3

2x
+
1

x

∫ 1

0

1

(1 + u)2
du = 0 alors, d’après le théorème des gendarmes, lim

x→+∞
F (x) =

0.

Corrigé de l’exercice 6

1. — Posons f : R× [0, 1] → R
(x, t) 7→ etx

√
1− t2

Pour tout x ∈ R la fonction t 7→ f(x, t) est continue donc l’intégrale définissant F (x)
est bien définie pour tout x ∈ R (en tant qu’intégrale d’une fonction continue sur un
segment), on a donc DF = R.

— On va procéder par récurrence. Pour n ∈ N on pose Pn « F est de classe Cn sur R et

F (n)(x) =

∫ 1

0

tnext
√
1− t2 dt ».

Initialisation :
La question 1. nous assure que P0 vraie.
Hérédité :
Soit n ∈ N, on suppose Pn vraie.
Soit a > 0 et x ∈ [−a, a].

Notons g : (x, t) 7→ tnext
√

1− t2

— Pour tout x ∈ [−a, a], la fonction t 7→ tnext
√

1− t2 est continue sur ]0,+∞[.
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— Pour tout x ∈ [−a, a] la fonction t 7→ tnext
√

1− t2 est intégrable sur [0, 1] en tant
que fonction continue sur un segment.

— Pour tout t > 0, la fonction x 7→ tnext
√
1− t2 est de classe C1 sur [−a, a] et

∂g

∂x
(x, t) = tn+1ext

√
1− t2

— Pour tout x ∈ [−a, a], la fonction t 7→ tn+1ext
√

1− t2 est continue sur ]0,+∞[.
— On a la majoration suivante

∀t ∈ [−a, a],
∣∣∣∣∂g∂x (x, t)

∣∣∣∣ ⩽ tn+1eat
√
1− t2

La fonction t 7→ tn+1eat
√
1− t2 est intégrale sur [0, 1] en tant que fonction continue

sur un segment

Ainsi, d’après le théorème de dérivabilité sous le signe intégrale, la fonction x 7→∫ +∞

0

tn+1eat
√
1− t2 dt. est de classe C1 sur [−a, a], ce pour tout a > 0. Elle est donc

de classe C1 sur R et sa dérivée est x 7→
∫ +∞

0

tn+1ext
√
1− t2 dt.

Ce qui prouve la propriété au rang n+ 1 et achève la récurrence

Ainsi F est de classe C∞ sur R, et, pour n ∈ N et x ∈ R on a F (n)(x) =

∫ 1

0

tnext
√
1− t2 dt.

2. — On a I0 =

∫ 1

0

√
1− t2 dt. La changement de variable t = sin(t) nous donne

I0 =

∫ π
2

0

| cos2(t)| dt =
∫ π

2

0

|1 + cos(2t)

2
| dt = π

4

— On a

I0 =

∫ 1

0

t
√
1− t2 dt =

[
− (1− t2)

3
2

3

]1

0

=
1

3

— Soit n ∈ N, on a In+2 =

∫ 1

0

tn+2
√
1− t2 dt

Posons u : t 7→ (1− t2)
3
2 ]

3
et v : t 7→ tn+1, u et v sont de classe C1 et on a alors

In+2 =

∫ 1

0

tn+2
√
1− t2 dt

=

∫ 1

0

u′(t)v(t) dt

= [u(t)v(t)]
1
0 −

∫ 1

0

u(v)v′(t) dt

= 0− 0 +
n+ 1

3

∫ 1

0

tn(1− t2)
√
1− t2 dt

=
n+ 1

3
In − n+ 1

3
In2

On en déduit que In+2 =
n+ 1

n+ 4
In

3. On remarque que In = F (n)(0),
Comme F est de classe C3, la formule de Taylor-Young nous donne l’existence d’un dévelop-
pement limité à l’ordre 3 en 0

F (x) =
x→0

F (0) + F ′(0)x+
F ′′(0)

2
x2 +

F (3)(0)

6
x3 + o(x3)

D’où
F (x) =

x→0

π

4
+
x

3
+
πx2

16
+
x3

45
+ o(x3)
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La courbe de F admet donc comme tangente la droite d’équation y =
π

4
+
x

3
au point

d’abscisse 0. De plus comme F (x)−
(π
4
+
x

3

)
∼
x→0

πx2

16
, la courbe est au-dessus de la tangente

au voisinage de 0.
4. — On a vu précédemment que, pour x ∈ R, on a

F ′(x) =

∫ 1

0

text
√
1− t2 dt ⩾ 0

Ainsi F est croissante sur R.
— Pour x 6= 0 on a

0 ⩽ F (x) ⩽
∫ 1

0

etx dt ⩽ ex − 1

x

Or lim
x→−∞

ex − 1

x
= 0, d’où, par encadrement, lim

x→−∞
F (x) = 0.

— Pour tout x > 0 on a etx ⩾ 1 + tx, d’où, par intégration

F (x) ⩾
∫ 1

0

(1 + tx)
√
1− t2 dt ⩾ π

4
+
x

3

D’où, par minoration lim
x→+∞

F (x) = +∞.

Corrigé de l’exercice 7

1. Pour (x, t) ∈ R2 on a |f(t)e−ixt| = |f(t)|.

Or f est intégrable sur R, i.e.
∫ +∞

−∞
|f(t)| dt converge. Ainsi, pour tout x ∈ R, la fonction

t 7→ f(t)e−ixt est intégrable. f̂ est ainsi bien définie.
De plus on a, pour x ∈ R,

|f̂(x)| =
∣∣∣∣∫ +∞

−∞
f(t)e−ixt dt

∣∣∣∣ ⩽ ∫ +∞

−∞

∣∣f(t)e−ixt∣∣ dt ⩽
∫ +∞

−∞
|f(t)| dt

Ainsi f̂ est bornée sur R.

— Pour tout x ∈ R, la fonction t 7→ f(t)e−ixt est continue
— Pour tout t ∈ R, la fonction x 7→ f(t)e−ixt est continue
— Pour (x, t) ∈ R2 on a |f(t)e−ixt| ⩽ |f(t)| et t 7→ |f(t)| est intégrable

D’après le théorème de continuité sous le signe intégrale, f̂ est alors continue sur R.

2. Pour n ∈ N, on pose, Pn « f̂ est de classe Cn sur R et ∀x ∈ R, f̂ (n)(x) =
∫ +∞

−∞
(−it)ne−itxe− t2

2 dt ».

Initialisation :

Pour n = 0, f est continue sur R et t2f(t) −→
t→±∞

0, donc f(t) =
t→±∞

o

(
1

t2

)
.

Ainsi f est intégrable sur R et d’après 1., f̂ est définie et continue sur R.
Hérédité :
Soit n ∈ N, on suppose Pn vraie.

On pose g(x, t) = (−it)ne−itxe− t2

2 .
— Pour tout x ∈ R la fonction t 7→ g(x, t) est continue sur R et, par croissances comparées,

t2|g(x, t)| −→
t→±∞

0, donc t 7→ g(x, t) est intégrable sur R.

— Pour tout t ∈ R, la fonction x 7→ g(x, t) est de classe C1 sur R et ∂g
∂x

= (−it)n+1e−itxe−
t2

2 .

— Pour tout x ∈ R, la fonction t 7→ ∂g

∂x
(x, t) est continue sur R
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— On a l’inégalité suivante

∀x, t ∈ R,
∣∣∣∣∂g∂x (x, t)

∣∣∣∣ ⩽ tn+1e−
t2

2

La fonction φ : t 7→ tn+1e−
t2

2 est continue et intégrable sur R.

Le théorème de dérivation sous le signe intégrale nous assure alors que x 7→
∫ +∞

−∞
(−it)ne−itxe− t2

2 dt

est de classe C1 sur R. Or d’après l’hypothèse de récurrence, cette fonction est la dérivée n-
ième de f̂ , donc f̂ (n) est de classe C1 et

∀x ∈ R, f̂n+1(x) =

∫ +∞

−∞
(−it)n+1e−itxe−

t2

2 dt

Pn+1 est vraie ce qui achève la récurrence.
Ainsi f̂ est de classe C∞ sur R.

3. On en déduit que

∀x ∈ R, f̂ ′(x) = −i
∫ +∞

−∞
e−itxte−

t2

2 dt

On effectue l’intégration par parties u(t) = ie−itx, v(t) = −e− t2

2 . u et v sont de classe C1

sur R. On a lim
t→±∞

u(t)v(t) = 0 et on a déjà prouvé que les intégrales impropres manipulées
étaient convergentes.
On a donc

∀x ∈ R, f̂ ′(x) = −x
∫ +∞

−∞
e−itxe−

t2

2 dt = −xf̂(x)

Ainsi
∀x ∈ R, f̂(x) = f̂(0)e−

x2

2

f̂(0) = 2

∫ +∞

0

e−
t2

2 dt par parité de la fonction intégrée. Le changement de variable affine

t =
√
2u, de classe C1, strictement croissant, réalisant une bijection de R+ sur lui-même

donne

f̂(0) = 2
√
2

∫ +∞

0

e−u
2

du =
√
2π

Ainsi,
∀x ∈ R, f̂(x) =

√
2πe−

x2

2

Corrigé de l’exercice 8

f n’est as définie pour x < 0. pour x ⩾ 0, t 7→
√
x+ t3 est continue sur le segment [0, 1].

L’ensemble de définition de f est donc R+

La fonction g : (x, t) 7→
√
x+ t3 est continue (en tant que fonction de deux variables) sur

R+ × [0, 1], donc la fonction f est continue sur R+.
Soit (x, y) ∈ (R+)

2 avec x < y. Soit t ∈ [0, 1], par croissance de la fonction racine carrée, on a√
x+ t3 ⩽

√
y + t3, d’où par croissance de l’intégrale, f(x) ⩽ f(y). f est donc croissante sur R+.

De plus, pour x ⩾ 0 et t ∈ [0, 1] on a
√
x ⩽

√
x+ t3 ⩽

√
x+ 1. Ainsi par intégration

∀x ⩾ 0,
√
x ⩽ f(x) ⩽

√
x+ 1

D’où f(x) ∼
x+∞

√
x.

Finalement le tracé de la courbe de f est
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Figure .1 – Tracé de la courbe de f

Corrigé de l’exercice 9

1. Soit x > 0, la fonction t 7→ e−t

x+ t
est continue sur [0,+∞[ et on a

∀t ⩾ 0, 0 ⩽ e−t

x+ t
⩽ e−t

x

Or la fonction t 7→ e−t

x
est intégrable sur [0,+∞[

Ainsi, par majoration f(x) est bien définie.

2. Posons g : (x, t) 7→ e−t

x+ t
.

— Pour x > 0 la fonction t 7→ g(x, t) est intégrable sur R+

— Pour t ⩾ 0, la fonction x 7→ e−t

x+ t
est de classe C∞ sur ]0,+∞[.

Sa dérivée n-ième est la fonction x 7→ (−1)nn!e−t

(x+ t)n+1
, qui est continue sur ]0,+∞[

— Pour tout n ∈ N, et tout x > 0 les fonctions t 7→ (−1)nn!e−t

(x+ t)n+1
sont continues sur [0,+∞[

— Hypothèse de domination :
Soit a > 0 alors, pour n ∈ N, x > a, et t ⩾ 0 on a∣∣∣∣ (−1)nn!e−t

(x+ t)n+1

∣∣∣∣ ⩽ n!e−t

an+1

Notons φn : t 7→ n!e−t

an+1
. φn est continue, positive sur [0,+∞[ et son intégrale impropre

sur [0,+∞[ est convergente.
De plus pour n ∈ N, x > a, et t ⩾ 0 on a∣∣∣∣∂ng∂xn

(x, t)

∣∣∣∣ ⩽ φn(t)

L’hypothèse de domination est vérifiée à tout rang n, sur tout segment [a,+∞[.
Ainsi, par récurrence, f est de classe C∞ sur tout [a,+∞[, donc sur ]0,+∞[.

De plus, pour x > 0 on a

f (n)(x) =

∫ +∞

0

(−1)nn!e−t

(x+ t)n+1
dt
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3. Pour x > 0 on a f ′(x) = −
∫ +∞

0

e−t

(x+ t)2
dt. Par positivité de l’intégrale impropre, f ′ est

négative sur R∗
+, donc f y est décroissante.

De plus on a

0 ⩽ f(x) ⩽
∫ +∞

0

e−t

x
dt ⩽ 1

x

D’où, par encadrement, lim
x→+∞

f(x) = 0

On a également

f(x) ⩾
∫ 1

0

e−t

x+ t
dt ⩾ 1

e

∫ +∞

0

1

x+ t
dt ⩾ ln(1 + x)− ln(x)

e

Or lim
x→0+

ln(1 + x)− ln(x)

e
= +∞, donc par encadrement, lim

x→0+
f(x) = +∞.

On obtient le tracé suivant

Figure .2 – Tracé de la courbe de f

4. Soit x > 0. On fait une intégration par parties dans f ′ en posant u(t) = e−t et v(t) = − 1

x+ t
.

u et v sont de classe C1 et lim
t→+∞

u(t)v(t) = 0

On a alors

f ′(x) =

∫ +∞

0

−e−t

(x+ t)2
dt

=

∫ +∞

0

u(t)v′(t) dt

= lim
t→+∞

u(t)v(t)− u(0)v(0)−
∫ +∞

0

u′(t)v(t) dt

= 0− 1

x
−
∫ +∞

0

e−t

x+ t
dt

= − 1

x
+ f(x)

Ainsi f est solution de l’équation(E) : y′ − y = − 1

x

f est une solutions particulière de (E). L’équation homogène associée est linéaire du premier
ordre à coefficients constants.
On en déduit que les solutions de (E) sont les fonctions de R∗

+ vers R, x 7→ f(x) + kex, où
k ∈ R.
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Corrigé de l’exercice 10

1. La fonction t 7→ e−t
2

est continue sur R, la primitive de cette fonction qui s’annule en 0 est
ainsi de classe C1 sur R et f , qui est le carré de cette fonction, est de classe C1 sur R. De
plus,

∀x ∈ R, f ′(x) = 2e−x
2

∫ x

0

e−t
2

dt

— Pour x ∈ R la fonction t 7→ e−x
2(1+t2)

1 + t2
est continue sur [0, 1] donc intégrable sur [0, 1]

— Pour t ∈ [0, 1] la fonction x 7→ e−x
2(1+t2)

1 + t2
est de classe C1 de dérivée x 7→ −2xe−x

2(1+t2)

— Pour x ∈ R la fonction t 7→ −2xe−x
2(1+t2) est continue sur [0, 1]

— Soit a > 0, pour x ∈ [−a, a] et t ∈ [0, 1] on a∣∣∣−2xe−x
2(1+t2)

∣∣∣ ⩽ a

La fonction t 7→ a est intégrable sur [0, 1]

D’après le théorème de dérivation sous le signe intégrale g est de classe C1 sur tout intervalle
[−a, a] avec a > 0 donc sur R et

∀x ∈ R, g′(x) = −2x

∫ +∞

0

e−x
2(1+t2) dt = −2e−x

2

∫ 1

0

xe−(xt)2dt

2. En posant le changement de variable ψ(t) = xt, on obtient, pour x ∈ R,

g′(x) = −2e−x
2

∫ 1

0

xe−(xt)2 dt

= −2e−x
2

∫ 1

0

e−(ψ(t))2ψ′(t) dt

= −2e−x
2

∫ ψ(1)

ψ(0)

e−u
2

du

= −2e−x
2

∫ x

0

e−u
2

du

Ainsi f ′ + g′ = 0.
3. f + g est une fonction dérivable de dérivée nulle sur l’intervalle R, c’est donc une fonction

constante. Or f(0) = 0 et

g(0) =

∫ 1

0

1

1 + t2
dt = [arctan(t)]

1
0 =

π

4

D’où
∀x ∈ R, f(x) + g(x) =

π

4

Pour x ∈ R on a g(x) = e−x
2

∫ 1

0

e−x
2t2

1 + t2
dt, D’où

∀x ∈ R, 0 ⩽ g(x) ⩽ π

4
e−x

2

On en déduit que lim
x→+∞

g(x) = 0 et donc lim
x→+∞

(∫ x

0

e−t
2

dt

)2

=
π

4

Ainsi I =

∫ +∞

0

e−t
2

dt =

√
π

2
.
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Corrigé de l’exercice 11

1. Pour tout α > 0 la fonction f est continue sur [0,
π

2
− α]. Le seul problème va venir du

comportement au voisinage de π
2

. Posons u =
π

2
−θ. Alors ln(1−sin(θ)2) = ln(1−cos(u)2) =

2 ln(sin(u)).
Au voisinage de 0, on a sin(u) =

u→0
u+ o (u). D’où 2 ln(sin(u)) ∼ 2 ln(u).

Or la fonction u 7→ ln(u) est intégrable au voisinage de 0. Ainsi la fonction θ 7→ ln(1− sin(θ)2

est intégrable au voisinage de π

2
.

2. (a) Pour montrer que F est bien définie et continue on va utiliser le théorème de continuité
sous le signe intégrale,
On pose pour cela g(θ, t) = ln(1 + t × sin(θ)2). Toutefois il ne va pas être possible de
trouver une domination sur [−1,+∞[. On va montrer que, ∀a > 0, f est bien définie et
continue sur l’intervalle [−1, a], ce qui montrera que f est bien définie et continue sur
[−1,+∞[. Soit a > 0.
— Pour t ∈ [−1, a] fixé, la fonction θ 7→ g(θ, t) est continue sur [0,

π

2
[

— Pour θ ∈
[
0,
π

2

]
la fonction t 7→ g(θ, t) est continue sur [−1, a].

— On a l’encadrement suivant :

∀t ∈ [−1, a] , ∀θ ∈ [0,
π

2
ln(1− sin(θ)2) ⩽ g(θ, t) ⩽ ln(1 + a sin(θ)2)

On a vu à la question précédente que la fonction θ 7→ − ln(1−sin(θ)2) est intégrable
et on sait que la fonction θ 7→ ln(1+ a sin(θ)2) est intégrable car elle est bornée sur
[0,

π

2
]. On peut alors prendre la majoration

∀t ∈ [−1, a] , ∀θ ∈ [0,
π

2
[ |g(θ, t)| ⩽ | ln(1 + a sin(θ)2)|+ | ln(1− sin(θ)2)|

On applique alors le théorème de continuité sous le signe intégrale. La fonction F est
donc bien définie et continue sur [−1, a[. Comme F est bien définie et continue sur
tous les intervalles [−1, a[ pour a > 0, il s’ensuit que F est bien définie et continue sur
[−1,+∞[.

(b) Pour montrer que F est bien définie et de classe C1 on veut utiliser le théorème de
dérivabilité sous le signe intégrale vu en cours
Toutefois il ne va pas être possible de trouver une domination sur ] − 1,+∞[. On va
montrer que, pour tout ε > 0, F est dérivable sur l’intervalle [−1 + ε,+∞[, ce qui
montrera que F est dérivable sur ]− 1,+∞[. Soit ε > 0.

— Pour t ∈]− 1,+∞[ fixé, la fonction θ 7→ g(θ, t) est intégrable sur
[
0,
π

2

]
.

— Pour θ ∈ [0,
π

2
], l’application t 7→ g(t, θ) est de classe C1 sur [−1+ε,+∞[. Sa dérivée

vaut
∂g

∂t
(t, θ) =

sin(θ)2

1 + t sin(θ)2

— On a la domination suivante :

∀t ∈ [−1 + ε,+∞[ , ∀θ ∈ [0,
π

2
]

∣∣∣∣ sin(θ)2

1 + t sin(θ)2

∣∣∣∣ ⩽ sin(θ)2

1 + (−1 + ε)× sin(θ)2

Et la fonction θ 7→ sin(θ)2

1 + (−1 + ε)× sin(θ)2
est intégrable sur

[
0,
π

2

]
.

On applique alors le théorème de dérivabilité sous le signe intégrale. La fonction F est
bien définie et de classe C1 sur [−1 + ε,+∞[, de dérivée

F ′(t) =

∫ π
2

0

sin(θ)2

1 + t× sin(θ)2
dθ

Comme F est de classe C1 sur tous les intervalles [−1 + ε,+∞[ pour ε > 0, il s’ensuit
que F est de classe C1 sur ]− 1,+∞[.

19 Bastien Marmeth



Lycée La Martinière Monplaisir PT

3. (a) Comme suggeré on va poser le changement de variable u = tan(θ). On obtient alors,
pour t > −1,∫ π

2

0

sin(θ)2

1 + t× sin(θ)2
dθ =

∫ +∞

0

u2

1+u2

1 + t× u2

1+u2

× 1

1 + u2
du

=

∫ +∞

0

u2

(u2 + 1)× (1 + u2 + t× u2)
du

=

∫ +∞

0

1

t
× 1

1 + u2
du−

∫ +∞

0

1

t
× 1

1 + (1 + t)× u2
du On fait le changement

de variable
v =

√
1 + t× u

=
π

2t
− 1

t
× 1√

1 + t
×

∫ +∞

0

1

1 + v2
dv

=
π

2t
− π

2t×
√
1 + t

=
π

2
×

√
1 + t− 1

t
√
1 + t

=
π

2
× (

√
1 + t− 1)× (

√
1 + t+ 1)

t
√
1 + t× (

√
1 + t+ 1)

=
π

2
√
1 + t× (1 +

√
1 + t)

On obtient bien :

∀t ∈]− 1,+∞[ F ′(t) =
π

2
√
1 + t× (1 +

√
1 + t)

(b) Posons, pour t ∈ [−1,+∞[, G(t) = π ×
(
ln(1 +

√
1 + t− ln(2)

)
. Alors, G est dérivable

sur ]− 1,+∞[ et,

∀t ∈]− 1,+∞[ G′(t) =
π × 1

2
√
1+t

1 +
√
1 + t

=
π

2
√
1 + t× (1 +

√
1 + t)

= F ′(t)

Ainsi, (F − G)′ est nulle sur l’intervalle ] − 1,+∞[. L’application t 7→ F (t) − G(t) est
constante et vaut en particulier F (0)−G(0)

On remarque que F (0) =
∫ π

2

0

ln(1+0) dθ = 0 et G(0) = π×
(
ln(1 +

√
1 + 0− ln(2)

)
= 0.

On a donc obtenu que :

∀t ∈]− 1,+∞[ F (t) = π ×
(
ln(1 +

√
1 + t− ln(2)

)

Corrigé de l’exercice 12

1. On a s(t) ∼
t→0

t

t
, ainsi s est prolongeable par continuité en 0.

Pour t 6= 0 on a

s′(t) =
t cos(t)− sin(t)

t2
=
t→0

t− t3

2 − t+ t2

6 o(t
3)

t2
−→
t→0

0

Ainsi, d’après le théorème de la limite de la dérivée s se prolonge en une fonction de classe
c1 sur R.

De plus, pour t ∈ R on a
∣∣∣∣ sin(t)t

∣∣∣∣ ⩽ ∣∣∣∣ tt
∣∣∣∣ ⩽ 1.

2. S est une primitive de s qui est de classe C1 sur R, S est donc de classe C2 sur R.

3. Soit x 6= 0, on pose u : t 7→ 1− cos(t) et v : t 7→ −1

t
, u et v sont de classe C1 et on a
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S(x) =

∫ x

0

sin(t)

t
dt

=

∫ x

0

u′(t)v(t) dt

= [u(t)v(t)]
x
0 −

∫ x

0

u(t)v′(t) dt

=
1− cos(x)

x
+

∫ x

0

1− cos(t)

t2
dt

4. La question précédente nous assure que lim
x→+∞

S(x) = I, ainsi
∫ +∞

0

s(t) dt converge, i.e. f(0)
est bien définie.
Soit x > 0

Il est tentant
d’écrire |s(t)e−xt| ⩽
|s(t)| mais rien ne
nous assure que∫ +∞

0

|s(t)| converge

(ce n’est d’ailleurs
pas le cas

Majoration

On a, pour t ⩾ 0 |s(t)e−xt| ⩽ e−xt, or la fonction t 7→ e−xt est intégrale sur R∗
+, ainsi,

par majoration la fonction t 7→ s(t)e−xt est intégrable sur [0,+∞[ ce qui nous assure de
l’existence de f(x).

5. Pour x > 0 on a

0 ⩽ |f(x)| ⩽
∫ +∞

0

∣∣s(t)e−xt∣∣ dt ⩽
∫ +∞

0

e−xt dt ⩽ 1

x

D’où, par encadrement, lim
x→+∞

f(x) = 0.

6. Soit a > 0.

— Pour x > a la fonction t 7→ s(t)e−xt est intégrable sur [0,+∞[

— Pour t ⩾ 0 la fonction x 7→ s(t)e−xt est dérivable sur [a,+∞[ de dérivée x 7→ sin(t)e−xt

— Pour x ⩾ a, la fonction t 7→ sin(t)e−xt est continue sur [0,+∞[

— Pour x ⩾ a et t ⩾ 0 on a
∣∣sin(t)e−xt∣∣ ⩽ e−at et la fonction t 7→ e−at est intégrable sur

[0,+∞[

Le théorème de dérivabilité sous le signe intégrale nous assure alors que f est de classe C1

sur [a,+∞[, ce pour tout a > 0. f est donc de classe C1 sur ]a,+∞[.

7. Pour x > 0 on a f ′(x) =
∫ +∞

0

sin(t)e−xt dt

Soit A > 0, on a alors∫ A

0

sin(t)e−xt dt = 1

2i

∫ A

0

e−xt+it − e−xt−it dt

=
1

2i

∫ A

0

e(−x+i)t − e(−x−i)t dt

=
1

2i

[
e(−x+i)t

−x+ i
− e(−x−i)t

−x− i

]A
0

=
e−xA
2i

(
eiA

−x+ i
− e−iA

−x− i

)
− 1

2i

(
1

−x+ i
− 1

−x− i

)
=

e−xA

2i

(
eiA

−x+ i
− e−iA

−x− i

)
+

1

1 + x2

Or ∣∣∣∣e−xA2i

(
eiA

−x+ i
− e−iA

−x− i

)∣∣∣∣ ⩽ e−xA

|x|

D’où lim
A→+∞

e−xA

2i

(
eiA

−x+ i
− e−iA

−x− i

)
= 0.

Ainsi f ′(x) =
∫ +∞

0

sin(t)e−xt dt = 1

1 + x2
.
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Il existe donc K ∈ R telle que, pour x > 0, f(x) = arctan(x) +K. Or lim
x→+∞

f(x) = 0, d’où

K = −π
2

.

Finalement
∀x > 0, f(x) =

π

2
− arctan(x)

8. Puisque f est continue en 0 on a f(0) = lim
x→0

f(x), i.e.

I = lim
x→0

π

2
− arctan(x) =

π

2

Corrigé de l’exercice 13

1. Pour t ⩾ 0 et x > −1 on pose g(x, t) = 1

1 + x3 + t3
. Soit a ∈]− 1, 0] et b > 1

— Pour x ∈ [a, b] la fonction t 7→ 1

1 + x3 + t3
est continue sur [0,+∞[ et 1

1 + x3 + t3
∼

t→+∞
1

t3
. On en déduit donc qu’elle est intégrable sur [0,+∞[

— Pour t ⩾ 0 la fonction x 7→ 1

1 + x3 + t3
est de classe C1 sur [a, b] de dérivée ∂g

∂x
: (x, t) 7→

−3x2

(1 + x3 + t3)2

— Pour x ∈ [a, b] la fonction t 7→ −3x2

(1 + x3 + t3)2
est continue sur [0,+∞[

— Pour x ∈ [a, b] et t ⩾ 0 on a

−3x2

(1 + x3 + t3)2
⩽ 3b2

(1 + a3 + t3)

La fonction t 7→ 3b2

(1 + a3 + t3)
est intégrable sur [0,+∞[

D’après le théorème de dérivation sous le signe intégrale f est de classe C1 sur tout intervalle
[a, b] avec −1 < a < 1 < b, donc de classe C1 sur ]− 1,+∞[.

Pour x > −1 on a f ′(x) =
∫ +∞

0

−3x2

(1 + x3 + t3)2
dt ⩽ 0, f est donc décroissante sur ]−1,+∞[.

2. Il s’agit d’une simple décomposition en éléments simples, puisqu’elle est déjà donnée il nous
suffit de vérifier le résultat en mettant le terme de droite sous le même dénominateur.
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On a alors, pour A > 0

On ne peut pas
travailler directe-
ment sur [0,+∞[
car l’intégrale∫ +∞

0

1

3(1 + t)
dt

diverge.

Intégrale impropre

∫ A

0

1

1 + t3
dt =

∫ A

0

1

3(1 + t)
+

2− t

3 (1− t+ t2)
dt

=

∫ A

0

1

3(1 + t)
dt+

∫ A

0

2− t

3 (1− t+ t2)
dt

=
1

3
[ln(1 + t)]

A
0 − 1

6

∫ A

0

2t− 1

1− t+ t2
dt+ 1

2

∫ A

0

1

1− t+ t2
dt

=
1

3
ln(1 + A)− 1

6

[
ln(1− t+ t2)

]A
0
+

1

2

∫ A

0

1(
t− 1

2

)2
+ 3

4

dt

=
1

3
ln(1 + A)− 1

6
ln(1−A+A2) +

1

2

[
2√
3
arctan

(
2t− 1√

3

)]A
0

=
1

6
ln

(
(1 +A)2

1−A+A2

)
+

1√
3
arctan

(
2A− 1√

3

)
− 1√

3
arctan

(
−1√
3

)
=

1

6
ln

(
(1 +A)2

1−A+A2

)
+

1√
3
arctan

(
2A− 1√

3

)
+

π

6
√
3

−→
A→+∞

π

2
√
3
+

π

6
√
3

−→
A→+∞

2π

3
√
3

Ainsi f(0) = 2π

3
√
3

3. Pour x > 0 on a
1

1 + x3 + t3
⩽ 1

x3 + t3
⩽ 1

x3
1

1 +
(
t
x

)3
En posant le changement de variable s = t

x
on obtient

∫ +∞

0

1

1 +
(
t
x

)3 dt = 2πx

3
√
3

Ainsi, on a
∀x > 0, 0 ⩽ f(x) ⩽ 2π

3
√
3x2

Par encadrement on en déduit que lim
x→+∞

f(x) = 0.
4. D’après la question 1. on a, pour x > −1,∫ +∞

0

1

1 + x3 + t3
dt, et f ′(x) = −3x2

∫ +∞

0

1

(1 + x3 + t3)2
dt

Posons u(t) = t et v(t) = 1

1 + x3 + t3
. u et v sont de classe c1 et lim

t→+∞
u(t)v(t) = 0.

On a alors

f(x) =

∫ +∞

0

1

1 + x3 + t3
dt

=

∫ +∞

0

u′(t)v(t) dt

= lim
t→+∞

u(t)v(t)− u(0)v(0)−
∫ +∞

0

u(t)v′(t) dt

=

∫ +∞

0

3t3

(1 + x3 + t3)2
dt

= 3

∫ +∞

0

(t3 + x3 + 1)− (x3 + 1)

(1 + x3 + t3)2
dt

= 3

∫ +∞

0

1

1 + x3 + t3
− (x3 + 1)frac1(1 + x3 + t3)2 dt

= 3f(x) +
x3 + 1

x2
f ′(x)
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f est donc solution de l’équation y′ +
2x2

x3 + 1
y = 0

5. La fonction x 7→ − 2x2

x3 + 1
admet comme primitive la fonction x 7→ −2

3
ln(1+ x3). D’après la

question précédente il existe alors K ∈ R tel que

∀x > −1, f(x) =
K

(1 + x3)
2
3

Or f(0) = 2π

3
√
3

, ainsi

∀x > −1, f(x) =
2π

3
√
3(1 + x3)

2
3

Corrigé de l’exercice 14

1. La linéarité de T ne pose aucun problème, le point important est de montrer que T (f) est
de classe C+∞

Soit a > 0, on va montrer par récurrence sur n que T (f) est de classe Cn sur [−a, a] et que

T (f)(n) : x 7→
∫ 1

0

tnf (n)(tx) dt

Initialisation : f ′ est continue sur [−a, a] donc bornée. Notons Ma =
∑

s∈[−a,a]

|f(s)|.

— Pour x ∈ [−a, a] la fonction t 7→ f(tx) est continue sur [0, 1]

— Pour t ∈ [0, 1] la fonction x 7→ f(tx) est de continue sur [−a, a]
— Pour x ∈ [−a, a] et t ∈ [0, 1] on a |f(tx)| ⩽Ma et la fonction t 7→Ma est intégrable sur

[0, 1]

Ainsi le théorème de continuité sous le signe intégrale nous assure que T (f) est continue sur
[−a, a],
Hérédité :

Soit n ∈ N, on suppose T (f) est de classe Cn sur [−a, a] et que T (f)(n) : x 7→
∫ 1

0

tnf (n)(tx) dt.

f (n+1) est continue sur [−a, a] donc bornée. Notons Ka =
∑

s∈[−a,a]

|f (n+1)(s)|.

— Pour x ∈ [−a, a] la fonction t 7→ tnf (n)(tx) est intégrable sur [0, 1] car continue
— Pour t ∈ [0, 1] la fonction x 7→ tnf (n)(tx) est de classe C1 sur [−a, a] de dérivée x 7→

tn+1f (n+1)(tx)

— Pour x ∈ [−a, a] la fonction t 7→ tn+1f (n+1)(tx) est continue sur [0, 1]

— Pour x ∈ [−a, a] et t ∈ [0, 1] on a |tn+1f (n+1)(tx)| ⩽ Ka et la fonction t 7→ Ka est
intégrable sur [0, 1]

Ainsi le théorème de dérivabilité sous le signe intégrale nous assure que T (f)(n) est de classe

C1 sur [−a, a]. T (f) est donc de classe Cn+1 sur [−a, a] et T (f)(n) : x 7→
∫ 1

0

tn+1f (n+1)(tx) dt,
ce qui achève la récurrence
T (f) est de classe C∞ sur [−a, a] ce, pour tout a > 0, elle est donc de classe C∞ sur R et,

pour x ∈ R on a T (f)(x) =
∫ 1

0

tf ′(tx) dt

2. Soit λ ∈ R∗, et f ∈ C∞.
Une intégration par parties nous assure alors que

∀x ∈ R∗, T (f)′(x) =
f(x)

x
− 1

x

∫ 1

0

f(tx) dt = f(x)

x
− 1

x
T (f)(x)

Supposons que f est un vecteur propre de T pour λ, on a alors T (f) = λf , d’où,

∀x ∈ R, λf ′(x) =
f(x)

x
− λ

x
f(x)

24 Bastien Marmeth



Lycée La Martinière Monplaisir PT

f est ainsi solution de l’équation différentielle λy′ +
(
λ− 1

λx

)
y = 0.

Il existe ainsi K ∈ R tel que

∀x ∈ R, f(x) = K exp

(
1− λ

λ
ln(|x|)

)
= K|x|

1−λ
λ

Réciproquement, si f : x 7→ K|x|
1−λ
λ alors∫ 1

0

f(xt) dt = K|x|
1−λ
λ

∫ 1

0

t
1−λ
λ dt

= K|x|
1−λ
λ

[
λt

1
λ

]1
0

= Kf(x)

Finalement λ ∈ Sp(T ) et Eλ(T ) = Vect
(
x 7→ |x|

1−λ
λ

)
Enfin, le changement de variable s = tx nous assure que, pour x 6= 0, T (f)(x) = 1

x

∫ x

0

f(s) ds

Supposons que f ∈ Ker(T ), alors, pour tout x 6= 0 on a
∫ x

0

f(s) ds = 0, d’où en dérivant

f(x) = 0. Ainsi Ker(f) = {0C∞(R)}.
Finalement Sp(T ) = R∗.
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